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Abstract

discovery of functional shifts in the microbiome.

Functional metagenomic analyses commonly involve a normalization step, where measured levels of genes or
pathways are converted into relative abundances. Here, we demonstrate that this normalization scheme introduces
marked biases both across and within human microbiome samples, and identify sample- and gene-specific properties
that contribute to these biases. We introduce an alternative normalization paradigm, MUSICC, which combines universal
single-copy genes with machine learning methods to correct these biases and to obtain an accurate and biologically
meaningful measure of gene abundances. Finally, we demonstrate that MUSICC significantly improves downstream

MUSICC is available at http://elbo.gs.washington.edu/software.html.

Background

The study of naturally occurring microbial communities
through shotgun metagenomic assays has become a rou-
tine procedure in recent years [1-6]. Such assays are
used, for example, to catalog the collection of genes in
the metagenome, to estimate their abundances, and ul-
timately, to characterize the functional capacity of the
community [1,3,7,8]. This process involves two steps.
First, genomic DNA is extracted from the sample and
sequenced using next-generation technologies. Next, se-
quenced reads are aligned to a database of reference
genes or genomes, and the number of reads that map to
each gene is used as a proxy for its abundance in the
sample [7,9,10]. Clearly, however, the resulting read
counts are highly dependent on the sequencing depth in
each sample, and some normalization method is required
to allow comparison across samples. This is most com-
monly achieved by a simple compositional normalization
process, whereby the obtained abundance value associated
with each gene is divided by the sum of abundance values
for all genes identified in the sample (for example, [2,11]).
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The resulting normalized value therefore represents a
measure of relative abundance and is used in subsequent
comparative analyses of the samples.

This normalization scheme, however, while extremely
prevalent, has several fundamental weaknesses that may
influence downstream analysis and ultimately impact the
identification of functional shifts across samples. First,
the resulting relative abundance values are unitless and
do not necessarily represent a meaningful biological
quantity. Second, in this normalization scheme, the
scaled abundance of each gene crucially depends on the
measured abundances of all other genes. As many differ-
ent sample-specific factors could affect these quantities,
abundance values could be disproportionately scaled in
different samples, dramatically biasing any downstream
comparative analysis. Compositional normalization is
also associated with several statistical drawbacks and
may give rise to misleading patterns [4,12]. For example,
as a marked increase in the abundance of one element
decreases the apparent relative abundance of other in-
variant elements, this normalization scheme tends to in-
duce spurious correlations between various elements in
the sample. As a result, comparative analyses of these
values across samples may be hard to interpret. These
drawbacks call for an alternative normalization proced-
ure, one that can produce accurate and easy to interpret
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abundance measures that can be reliably compared
across samples.

Notably, a few previous metagenomics-based studies
have already highlighted the challenges involved in com-
positional normalization. Specifically, studies of species
composition have previously demonstrated that compos-
itional normalization of taxonomic data could both mask
true correlations between pairs of taxa and introduce
false correlations [13-16]. Other studies of oceanic com-
munities have further emphasized the biases introduced
by compositional normalization of environmental meta-
genomic samples, specifically highlighting the potential
contribution of the average genome size in each sample
to these biases [17-19]. To date, however, the impact of
compositional normalization on functional metagenomic
studies of the human microbiome has never been shown
or characterized, nor have the various sample-specific
properties that may contribute to inaccuracies in abun-
dance measures. Furthermore, previous studies of
environmental metagenomes that aimed specifically to
address genome-size induced bias still failed to provide
biologically meaningful and interpretable measures of
gene abundance.

Finally, even within each sample, various gene-specific
properties may bias measured abundances. Compositional
normalization, or for that matter, any normalization scheme
that applies an identical processing protocol to all genes,
will inevitably fail to account for such errors. Indeed, to
date, no attempts to characterize or correct within-sample
biases in genes’ abundances have been introduced,
potentially neglecting important factors that may fur-
ther contribute to inaccuracies in gene abundance
measures.

In this study, we analyze samples from the Human
Microbiome Project (HMP) [2,7,11,20], as well as sam-
ples from two additional independent studies of the hu-
man gut microbiome [4,11,21], and demonstrate that
compositional normalization has a clear and measurable
effect on the obtained metagenomic functional profiles.
We specifically show that this normalization protocol in-
duces spurious inter-sample variation in the calculated
abundances of various genes across samples from the
same body site, across samples from different body sites,
and across samples from different studies. We identify
three sample-specific properties that play a key role in
generating this spurious variation, including the average
genome size, species richness, and mappability of ge-
nomes in the sample, and suggest a simple and more
biologically meaningful normalization method that aims
to quantify the typical genomic copy number of each
gene in the sample. We additionally show that gene-
specific properties, such as sequence conservation and
nucleotide content, further induce spurious intra-sample
variation in the measured gene abundances, and provide
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an additional machine learning-based method to correct
these inaccuracies. Finally, we demonstrate that our cor-
rection paradigm indeed provides improved abundance
estimates and has clear and significant benefits for
downstream comparative analyses. Specifically, we show
that our method aids in the discovery of differentially
abundant genes (and corrects false discovery of invariant
genes), markedly increases the power to detect disease-
associated pathways, and supports cross-study compara-
tive analyses. Combined, these benefits allow us to move
towards a more rigorous and unbiased estimate of the
average genomic copy number of each gene in human
microbiome samples, facilitating an accurate identifica-
tion of functional shifts that may be associated with
disease.

Results and discussion

Spurious inter-sample variation in HMP samples and its
determinants

To examine the impact of compositional normalization
on the analysis of human microbiome samples, we first
identified a set of 76 universal single-copy genes (USiCGs;
see Methods and Additional file 1: Table S1). These genes
are found in the genomes of almost all microorganisms,
and generally at a single copy and therefore represent a
proxy for invariant genomic elements. Ideally, therefore,
since the content of each metagenome represents a simple
linear combination of the genomic content of the constitu-
ent species, one would expect such USiCGs to also be in-
variant across metagenomes. Put differently, comparative
metagenomic analyses, which aim to identify shifts in the
genic composition of the microbiome, could be considered
accurate only if genes that are universally present in every
member species in every sample exhibit no variation across
samples. However, examining the relative abundances
of USiCGs in metagenomic samples from the HMP
(Methods), we found a marked variation both between
and within body sites (Figure 1; Additional file 2:
Figure S1). For example, the median relative abun-
dance of USiCGs in tongue dorsum samples is on
average 1.3-fold higher than the median relative abun-
dance of these genes in retroauricular crease samples.
Similarly, the median relative abundance of USiCGs in
some stool samples is 1.9-fold higher than in other
stool samples. Importantly, this spurious variation in
the observed abundance of USiCGs indicates that the
calculated abundances of other genes may also be
biased, potentially affecting any downstream compara-
tive analysis and the correct identification of differen-
tially abundant pathways.

Notably, the variation in the abundance of the various
USiCGs appears to be consistent and sample-specific; in
certain samples the abundances of all USiCGs tend to be
high whereas in others the abundances of all USiCGs
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Figure 1 Spurious inter-sample variation across HMP metagenomic
samples. (A) Variation in the relative abundance of USiCGs across
different body sites (P <107%, Kruskal-Wallis test). For each sample,
the median relative abundance of the 76 USiCGs was used as a
representative value. Boxes denote the interquartile range (IQR)
between the first and third quartiles with the black line inside
each box denoting the median. Whiskers extend to the lowest and
highest values within 1.5 times IQR and outliers are marked in red.
(B) The relative abundance of USiCGs across HMP stool samples.
Each box illustrates the distribution of the relative abundances of
the various USiCGs within each sample. Box range, whiskers, and
outliers are defined as in panel A. See also Additional file 2: Figure
S1 for the distribution within all other body sites.

tend to be low (Figure 1; Additional file 2: Figure SI).
We therefore set out to identify sample-specific proper-
ties that may contribute to this spurious variation in
USiCGs’ abundances. One obvious candidate is the aver-
age genome size in the sample. Indeed, previous studies
have demonstrated that the average size of genomes var-
ies substantially across samples [22,23]. Since USiCGs,
by definition, appear in one copy in each genome, as the
average genome size in the sample increases, the fraction
of the sample’s DNA that originates from USiCGs be-
comes smaller, and accordingly, the calculated relative
abundance of USiCGs decreases. This further highlights
the problematic nature of compositional normalization,
wherein an increase in the abundance of some element
in the metagenome brings about an artificial and bio-
logically meaningless decrease in the calculated relative
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abundances of all other elements in the sample. Previous
studies of marine microbiome samples have indeed sug-
gested that the average genome size can account, at least
partially, for bias in the relative abundance of a small set
of invariant genes across samples [13,15,18]. To examine
whether such association between spurious variation and
the average genome size can also be observed in the hu-
man microbiome, we used a recently introduced compu-
tational method [17,24] to estimate the genome size of
each operational taxonomic unit (OTU) in every sample
(Methods). We then calculated the average genome size
in each sample, weighting the genome size of each OTU
by the OTU's relative abundance in the sample. Compar-
ing these average genome sizes with the median relative
abundance of USiCGs across all body sites, we indeed
found a strong negative correlation (R =-0.78, P <0.05,
Pearson correlation test), where the relative abundance
of USIiCGs tend to be lower in samples with larger
genomes (Figure 2A). A similar correlation is clearly
observed also across samples from the same body site
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Figure 2 The median abundance of USiCGs across HMP
samples is negatively correlated with the average genome

size both (A) across different body sites (R=-0.78, P <0.05) and
(B) across stool samples (R=-0.82, P <10°"%). See Methods for
more details on average genome size estimation. In (A), each cross
represents the median and the median absolute deviation across all
samples from each body site. In (B), each point represents a single
stool sample. Regression lines are illustrated in black.
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tongue dorsum; Pearson correlation test, Figure 2B and
Additional file 3: Figure S2A and B).

We next set out to examine additional, yet to be
identified sample-specific properties that may further
contribute to biasing observed relative abundances.
We specifically focused on two such candidate proper-
ties: the species richness of the sample, and the mapp-
ability of species in the sample to fully sequenced
reference genomes. Both these properties may influ-
ence the fraction of reads that map to known genes
(or functions) and could consequently impact the rela-
tive abundance of reads that map to, for example,
USiCGs. Specifically, as species richness increases and
the community includes rarer and more poorly char-
acterized species, and as the overall mappability of
community members to fully sequenced species de-
creases, more and more genes in the genomes of the
various community members may not have a close
ortholog in the database and reads originating from
these genes may fail to map to any known orthology
group. In contrast, reads that originate from USiCGs
(that are by definition present in every genome and
are well conserved) or from other, relatively common
genes, will likely still map successfully to their known
orthologs, and their relative abundance will accord-
ingly appear higher. Using the number of OTUs iden-
tified in a sample as a measure for species richness,
and the average evolutionary similarity between each
OTU in a sample to its nearest sequenced reference
genome as a measure of mappability (Methods), we in-
deed found that both of these properties correlate with
the relative abundances of USiCGs. Specifically, in the
gut microbiome, for which the largest number of
HMP samples was available, the correlation between
the median relative abundance of USiCGs and species
richness was 0.44 (P <103 Pearson correlation test)
and the correlation between USiCGs’ abundance and
mappability was -0.85 (P <10"7; Pearson correlation test).
Evidently, as the richness of species in the sample decreases
or their similarly to other sequenced reference genomes
increases, the measured relative abundance of USIiCGs
increases as well (Additional file 4: Figure S3A-B). Import-
antly, although these three sample-specific properties
(namely, average genome size, species richness, and mapp-
ability) are inter-correlated, each property is significantly
correlated with the abundance of USiCGs even when con-
trolling for the other two properties (see Methods), suggest-
ing that each such property has an independent impact on
USICGs variation and is not just a correlated byproduct
(Tables 1 and 2; Additional file 4: Figure S3C and D). A
similar pattern was also observed in the tongue dorsum
microbiome (Additional file 3: Figure S2C and D; other
sites did not have enough samples available for such an
analysis)
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Table 1 Correlations and controlled correlations between
the abundance of USiCGs and various sample-specific
properties in the stool samples

Sample-specific Correlation with Controlled correlation

property USiCGs abundance  with USiCGs abundance?
Genome size 082 (P <107 -046 (P <107)
Mappability 085 (P <10 058 (P <10°)
Species richness 044 (P <107 037 (P <0.003)

Partial correlation, controlling for the other two properties (see Methods).

Spurious inter-sample variation across different studies
Having demonstrated clear spurious variation in the
abundance of USiCGs across HMP samples, we next ex-
amined whether such variation can also be observed in
the abundance of these genes across independent stud-
ies. We therefore obtained metagenomic data describing
the human gut microbiome of healthy individuals from
three different studies, including 134 samples from the
HMP [2,19], 60 samples from a study of the gut micro-
biome in inflammatory bowel disease in European indi-
viduals (IBD) [4,25], and 174 samples from a study of
type 2 diabetes in Chinese individuals (T2D) [11]
(Methods). We computed the median abundance of
USiCGs in each sample and compared these values
across studies. We again found marked variation in the
relative abundance of USiCGs, with up to a three-fold
difference between studies (Figure 3A) and up to a 2.3-
fold difference within a single study (Figure 3B).

We further wished to examine whether the same
sample-specific properties that we identified above as
contributing to this bias in HMP samples play a role also
in the observed spurious variation across the different
studies. However, as full taxonomic data (in the form of
OTU counts) was only available for HMP samples, a dir-
ect comparison was not feasible. Instead, we therefore
searched for a sample-specific property that was avail-
able for all three studies and that could serve as a statis-
tical proxy for the OTU-based properties examined
above. Using the HMP dataset, we found that the total
number of assembled contigs in a sample was highly
correlated with the average genomic size, species rich-
ness, and average mappability in the sample (Pearson
correlation R=-0.52, R=0.55, and R=-0.53, respect-
ively). Since all three studies performed de novo contig
assembly, this measure could be used in lieu of the more
explicit sample-specific properties utilized above. Com-
paring the number of contigs per sample in the various
studies with the median relative abundance of USiCGs,
both between and within the different studies, we indeed
found a similar trend as observed above. Specifically, the
study with the highest number of assembled contigs
(HMP; median value of 119,231 contigs per sample) was
also the one with the highest median relative abundance
of USIiCGs (8.65x 10™%), whereas the study with the
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Table 2 Correlations between sample-specific properties

Property 1 Property 2 Correlation

Genome size Mappability 0.8 (P <107%)
Genome size Species richness -0.25 (P <0.04)
Mappability Species richness -0.27 (P <0.02)

fewest contigs (T2D; median value of 27,274 contigs
per sample) was the one with the lowest median rela-
tive abundance of USiCGs (2.63 x 107*). Similarly, a
modest to strong correlation was found between the
number of assembled contigs and USiCGs’ abundance
across the samples within each study (R=0.6, R=0.11,
and R=0.28 for HMP [2], IBD [4], and T2D [11],
respectively).

These findings suggest that spurious variation in the
relative abundance of USICGs is also evident across
multiple independent studies and may be accounted for
by similar sample-specific properties. Importantly, this
implies that compositional normalization may hinder
future attempts to pool datasets from multiple studies in
order to increase the power to discover functional vari-
ation in the human microbiome (and see also our cross-
study comparative analysis below).
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Figure 3 Spurious inter-sample variation in the functional
metagenome of healthy gut microbiome samples across three
independent studies. The median relative abundance of USiCGs
across the different studies (A) and the relative abundance of
USICGs within each study (B) are illustrated. Boxes and whiskers
are defined as in Figure 1.
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Inter-MUSICC: correcting spurious inter-sample variation
To correct the spurious inter-sample variation demon-
strated above, we present here a fundamentally different
normalization scheme. Clearly, with the identification of
sample-specific properties that contribute to spurious
variation, one potential approach for addressing this
challenge would be to carefully characterize how each
sample-specific property affects normalized abundances
and apply some mathematical formulation to reverse
this effect. Previous attempts to specifically correct the
impact of average genome length indeed took this
approach [18,19]. However, considering the multiple
sample-specific properties identified in the previous sec-
tion and their complex intertwined contribution to
spurious variation, we took a more direct approach that
corrects spurious sample-specific variation, regardless of
its determinants, and provides a biologically intuitive
and meaningful measure for gene abundances in a meta-
genome (and see also our analysis of simulated samples
below). Specifically, our method aims to describe the
abundance of each gene in the microbiome, not as its
relative abundance in the sample, but rather as the aver-
age copy number of this gene (with respect to some
copy number proxy as described below) across all micro-
bial cells in the sampled community. The functional pro-
file obtained by this normalization method for a given
sample can accordingly be conceived as a description of
the gene content of a ‘typical microbe’ from that sample.
This profile therefore has a clear biological interpret-
ation, and can be reliably and meaningfully compared
across samples.

In practice, this normalization paradigm is achieved by
using the same set of USiCGs described above as the
yardstick for estimating the average copy number of all
other genes. Technically, the measured abundance of
each gene in a sample (after correcting for gene length)
is divided not by the sum of all abundances, but rather
by the median abundance of the USiCGs in the sample.
With this correction, USiCGs in every sample have a
consistent median value of one (as expected by their def-
inition), and all other genes are measured in comparison
to these USiCGs. We therefore term this normalization
method ‘Inter-sample Metagenomic Universal Single-
Copy Correction’ (Inter-MUSICC).

Evaluating the impact of Inter-MUSIiCC on functional
metagenomic profiles

Inter-MUSICC, by definition, corrects the spurious inter-
sample variation we demonstrated above in USiCGs. For
this normalization scheme to be useful, however, it should
clearly also yield improved abundance estimates for all
other genes. We focus on HMP stool samples, owing to the
large number of samples available and the ability to exam-
ine also the impact of MUSICC on multiple studies of the
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gut microbiome. Focusing on a single body site also allows
us to assess the performance of MUSICC on a more
homogenous set of samples and therefore to evaluate
MUSICC’s ability to correct even the relatively fine vari-
ation observed in such samples. Notably, however, as the
actual average copy number of each gene in these samples
is unknown, evaluating the impact of inter-MUSIiCC and
assessing whether it produces reasonable estimates of aver-
age copy numbers in these metagenomes is a challenging
task.

To address this challenge, we considered the set of genes
that occur in only one OTU per sample (Methods). For
such OTU-Specific Genes (OSGs), the relationship between
the abundance of each gene and the abundance of the cor-
responding OTU is not complicated by the presence of
other OTUs in the sample, making it easier to evaluate the
impact of Inter-MUSICC on the corrected abundance
values. Specifically, as each OSG occurs in only one OTU,
clearly, the abundance of the OSG across the various sam-
ples should positively correlate with the abundance of the
respective OTU. If Inter-MUSICC indeed provides a more
accurate estimation of gene abundance compared to com-
positional normalization, this correlation between OSGs’
and OTUs’ abundances should improve with the applica-
tion of Inter-MUSICC. Since many OTUs observed in each
sample are not yet associated with a fully sequenced gen-
ome, we used a recently introduced tool to predict the gen-
omic content of each OTU (Methods) [24]. In total, we
identified 3,821 OSGs in 993 OTUs across 65 HMP stool
samples. For each such OSG, we calculated the correlation
between its abundance across the various samples and the
abundance of its respective OTU with and without the ap-
plication of Inter-MUSICC. We found that Inter-MUSiCC
indeed significantly increased the average correlation be-
tween the abundances of OSGs and their respective OTUs
(P <1072, paired t-test; Methods), suggesting that the abun-
dance values obtained by Inter-MUSICC more accurately
reflect gene abundances. To further confirm the beneficial
impact of Inter-MUSICC on the abundance of OSGs, we
additionally examined the ratio of OSGs’ (and OTUs)
abundances across pairs of samples. Such a ratio-based ana-
lysis may cancel out various factors that confound the rela-
tionship between OSGs’ and OTUs’ abundances (such as
false detection of OSGs), further highlighting the accuracy
of calculated OSGs’ abundances. Specifically, as each OSG
occurs in only one OTU, the ratio between its abundance
in one sample to its abundance in another should be similar
to the ratio between the abundances of the respective OTU
in these two samples. For example, if a certain OTU ex-
hibits a three-fold increase in abundance between two sam-
ples, any OSG that is associated with only this OTU in
these two samples is also expected to exhibit a three-fold
increase in abundance. To confirm this, for each case where
the same OSG appeared in two different samples, we
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quantified the difference between the fold-change in the
OSG abundance between the two samples and the fold-
change in the OTU abundance between these samples
(Methods). We found that both when using compositional
normalization and when using Inter-MUSICC, OSGs ex-
hibit on average a higher fold-change than expected from
the fold-change in their respective OTU abundances. This
may reflect subsampling issues, wherein low-abundance
OTUs can be accurately measured through 16S sequencing,
while the abundance of their genes may still be underesti-
mated by shotgun metagenomic sequencing. Yet, with
Inter-MUSICC, OSGs’ abundance fold-change was signifi-
cantly closer to the measured fold-change in OTU abun-
dance (P <10°', paired t-test), suggesting that at least
some of the bias in the abundances of each gene was
corrected.

Finally, since compositional normalization is known
specifically to introduce false correlations between nor-
malized elements [12], we set out to examine the impact
of Inter-MUSICC on pairwise gene correlation. As be-
fore, a gold standard for the true correlation structure in
the human microbiome is not available. However, since
metagenomes represent a large collection of genomes,
one could expect that pairs of genes whose occurrences
across genomes are highly correlated (that is, they tend
to either both be present in a genome or both be ab-
sent), would also be correlated in their abundance across
metagenomes. We therefore compared for each gene the
correlation of its occurrence and the occurrence of every
other gene across fully sequenced genomes in the KEGG
database [1,3], with the correlation of its abundance and
the abundance of every other gene in HMP stool meta-
genomic samples (Methods). We found that with Inter-
MUSICC the similarity between the genomic and meta-
genomic correlation structure is significantly higher than
with compositional normalization (P <10™%!, Student’s ¢-
test), again suggesting that Inter-MUSICC better cap-
tures the abundance levels of the various genes in the
metagenome.

Spurious intra-sample variation and its determinants

In the previous sections, we demonstrated that several
sample-specific properties could bias the measured
relative abundances of the various genes in each metage-
nomic sample, giving rise to spurious inter-sample vari-
ation. However, examining the relative abundance of
USiCGs within a single sample (after normalizing for
their length), we also find marked variation within sam-
ples. Importantly, this intra-sample variation is highly
consistent across samples, with some USiCGs regularly
exhibiting higher abundance than others (Figure 4).
Since every genome in the sample encodes the same
number of copies of each of these genes (namely, a sin-
gle copy), this intra-sample variation clearly does not
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represent true variation in the composition of the sam-
ple. Moreover, the consistency in this variation suggests
that it can be attributed to gene-specific properties that
systemically bias the measured abundance.

To test this hypothesis, we collected a set of 35 gene-
specific properties, including various conservation fea-
tures (across the gene orthology group) and nucleotide
content measures (Additional file 5: Table S2; Methods).
Focusing again on HMP stool samples, we identified a
subset of these properties that were significantly corre-
lated with intra-sample variation in USiCGs (measured
as the fold-change between the abundance of each
USIiCG and the average abundance of all USiCGs in
the sample; Additional file 5: Table S2). For example,
USiCGs with high GC content tended to exhibit lower
abundance compared to USiCGs with low GC content.
Similarly, USiCGs with highly variable length (measured
as the standard deviation in the length of the gene across
all members of the gene orthology group) were more
likely to have lower abundance compared to USiCGs
with a more consistent length. To examine the predict-
ive power of such gene-specific properties on spurious
intra-sample variation and to account for the potentially
strong dependencies between the various properties, we
further used a machine learning approach with L,
regularization to obtain for each sample a linear model
that links these gene-specific properties to observed vari-
ation (Methods). Remarkably, we found that this linear
model correctly predicts and can correct on average
>50% of the observed intra-sample variability in USiCGs’
abundance on held-out test data across HMP stool
samples (Figure 5A). Moreover, examining which gene-
specific properties were selected by the linear model in each
sample, we found a clear agreement between models across
the various samples (Figure 5B), highlighting the robustness

E

Universal single-copy genes (USiCGs)

Figure 4 Spurious intra-sample variation in the abundance of
USICGs is consistent across samples. The heatmap illustrates the
abundance of each of the 76 USICGs (x-axis) across 134 HMP stool
samples (y-axis). The color gradient denotes the abundance after
correcting for spurious inter-sample variation (using Inter-MUSICQ),
and hence represents the average copy number of the USICG in
the sample.

Samples
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of this model. Among the properties that were repeatedly
selected by the model were the median GC nucleotide
content of the gene orthology group and the number of
species in which this gene could be detected using KEGG’s
hidden-Markov model.

Intra-MUSICC: correcting spurious intra-sample variation and
evaluating its impact on functional metagenomic profiles
Our findings above suggest that spurious intra-sample
variation in USiCGs could be corrected by learning a
predictive linear model that accounts for the impact of
various gene-specific properties on measured gene abun-
dances. Assuming that such spurious intra-sample vari-
ation also occurs in other, non-USiCG genes, we can use
the USiCGs-based model as a proxy for the effect of
gene-specific properties and apply this model to correct
the measured abundances of all other genes in the sam-
ple. Since this method again relies on the set of USiCGs
identified above, we term it ‘Intra-sample Metagenomic
Universal Single-Copy Correction’ (Intra-MUSICC). Not-
ably, this predictive model can be learned once (for ex-
ample, using a large set of metagenomic samples) and
applied to every new sample without modification. In what
follows, however, we used a somewhat more sophisticated
approach wherein a predictive model is learned in each
sample separately (based on the abundances of USiCGs in
that sample), cross-validated on unseen USiCGs abun-
dances, and used to correct variation within that sample.
This approach assumes that the impact of gene-specific
properties on measured abundances may slightly vary from
sample to sample and aims to capture the potentially
unique effect of gene-specific properties in the sample. We
confirmed, however, that the more generic approach, in
which the predictive model is learned once and applied to
all samples, produced qualitatively the same results as re-
ported below.

In the previous section, we already demonstrated that
Intra-MUSICC corrects much of the spurious intra-
sample variation in USiCGs’ abundances (see Figure 5).
However, to confirm that Intra-MUSICC is a useful and
applicable correction scheme, we next set out to validate
that it indeed yields improved abundance estimates also
for non-USiCGs genes, focusing, as before, on the set of
HMP stool samples (see above). As was the case for our
analysis of Inter-MUSIiCC, this task is challenging since
the true abundance values of non-USiCGs across sam-
ples is not available. We therefore used several different
approaches, each focusing on a specific set of genes, to
evaluate the performance of Intra-MUSICC and to con-
firm that the corrected gene abundance values are in-
deed more accurate and more informative than the
widely-used relative abundance values.

First, we identified a set of 72 genes that did not meet
our criteria for USiCGs, but that could still be considered
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universal single-copy genes under a more relaxed set of re-
quirements (Additional file 6: Table S3; Methods). Specific-
ally, such ‘semi’-USiCGs tend to have a single copy in the
vast majority of genomes, but are not as prevalent as the
USiCGs described above. While this set is expected to be
more variable than USIiCGs (due to true variation in their
occurrence across genomes), we hypothesized that at least
some of the observed intra-sample variation among these
genes might be spurious and accounted for by the various
gene-specific properties detected above. Indeed, we found
that when using the USiCGs-based model (Intra-MUSiCC)
to correct the abundance values of these genes across all
HMP stool samples, 17% of the variation in these semi-
USiCGs was corrected. Notably, this reduction in variation
is observed even though these semi-USiCGs were never
used in the construction of the model.

Next, we focused on pairs of genes whose occurrence
is highly correlated across genomes. Specifically, examin-
ing the gene content of all reference genomes in KEGG
[1,3], we identified 1,074 pairs of genes whose presence/
absence profiles agree across >95% of the genomes in
which they appear (Methods). Importantly, we excluded
all USiCGs (as well as the semi-USiCGs described
above) from this analysis. For each such pair, we com-
puted the average absolute difference in abundance
across HMP stool samples, before and after applying
Intra-MUSICC. Clearly, high co-occurrence across ge-
nomes does not necessarily imply perfectly correlated
abundance across metagenomes. A metagenome may,
for example, include a relatively large proportion of
exactly those genomes in which the two genes do not

co-occur. Yet, it is reasonable to assume that such geno-
mically co-occurring genes will tend to exhibit similar
abundances across metagenomes. Accordingly, we hy-
pothesized that the observed differences between the
abundances of such gene pairs can be partly accounted
for by spurious intra-sample variation that arises from
gene-specific bias as opposed to true biological vari-
ation. In line with this hypothesis, we indeed found
that both the mean and variance of the pairwise differ-
ences in the abundance of each of the 1,074 gene-pairs
were significantly lower with the application of Intra-
MUSICC (P <10 and P <10, for mean and vari-
ance, respectively; paired t-test for mean, paired F-test
for variance).

Finally, we extended the analysis of genomically co-
occurring genes, focusing on clusters (rather than pairs)
of genes whose occurrence is highly correlated across
genomes. We again used the set of KEGG reference ge-
nomes to identify 25 gene clusters, each consisting of at
least five genes (with a total of 216 genes) whose pair-
wise presence/absence profiles agree in >95% of ge-
nomes (Additional file 7: Table S4; Methods). Again, we
assumed that such genomically co-occurring genes are
likely to exhibit similar abundances across HMP gut
metagenomic samples. We used Intra-MUSICC to cor-
rect the abundance of each gene in the various clusters
and compared the corrected abundance measures to the
original relative abundance values in each cluster. Im-
portantly, using clusters of genes rather than independ-
ent pairs allowed us to examine not only the pairwise
difference in abundance but also the proportion of
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variance explained within each cluster. We found that
on average Intra-MUSICC corrected 8.2% of the variance
within each gene cluster (Additional file 7: Table S4). As
an example, one such gene cluster contained all eight
genes in the F-type ATPase structural module. Although
these eight genes are highly consistent in their presence/
absence patterns across reference genomes (median pair-
wise Jaccard similarity of >98%), their abundances across
HMP stool samples vary by up to approximately 2.1-fold
on average (and >13.4-fold in some samples). Intra-
MUSICC (which notably employs a model learned on
USiCGs alone and for which these eight genes can be
conceived as unseen data) corrected on average 32% of
this variance.

MUSICC markedly enhances the discovery of functional
shifts in the microbiome

Above, we demonstrated that MUSICC successfully cor-
rects both inter- and intra-sample spurious variation in
gene abundances. Clearly, however, the key goal of any
metagenomic normalization scheme is to facilitate com-
parative analysis and to enable the discovery of func-
tional shifts in the metagenome that may be associated
with a given host phenotype. Next, we therefore set out
to examine whether MUSICC (that is, the combined
application of Inter-MUSICC and Intra-MUSICC) has a
concrete and significant impact on such comparative
analyses and whether it affects the identified set of
differentially abundant genes or pathways in various
settings.

We first examined the impact of MUSICC on the de-
tection of differentially abundant genes. Specifically, we
used standard comparative analysis (Methods) to identify
genes that exhibit differential abundance between HMP
stool samples and tongue dorsum samples, with and
without the application of MUSICC to correct the abun-
dances of genes. Comparing the obtained sets of differ-
entially abundant genes, we found an overall agreement,
with 90% of the detected genes identified both with and
without MUSICC. Notably, however, there were also
substantial differences between the two sets, with 382
genes found to be differentially abundant only when
using MUSICC and 343 genes found to be differentially
abundant only when using standard compositional
normalization (Figure 6A). Interestingly, among the 382
genes identified only with MUSICC, genes involved in
Lipopolysaccharide biosynthesis - a known gut metabolic
pathway [9,10] - were over-represented (P <1073, hypergeo-
metric test). Conversely, the 343 genes detected only by
compositional normalization showed over-representation of
ribosomal genes (P <107, hypergeometric test) and in fact
included many (36) of the 76 USiCGs. This clearly and ef-
fectively highlights the problematic nature of compositional
normalization, wherein fundamentally invariant genes can
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be detected as differentially abundant due to the biases in-
troduced by this normalization scheme. We observed a
similar pattern also when comparing HMP stool samples to
other HMP body sites, with an average of 391.7 genes iden-
tified as differentially abundant in stool only when using
MUSICC (Additional file 8: Figure S4).

Crucially, MUSICC’s impact on the detected set of dif-
ferentially abundant genes is observed not only when
comparing different body sites in healthy individuals, but
also when comparing disease cases vs. healthy controls.
Specifically, analyzing the two disease-related studies
discussed above (namely, the Type 2 diabetes study [11];
T2D, and the inflammatory bowel disease study [4];
IBD), a similar pattern was found, with many genes de-
tected as differentially abundant by only one of the two
normalization methods. In fact, in these datasets, the set
of differentially abundant genes discovered with and
without MUSICC exhibit an even lower agreement, with
only 78% and 48% overlap between the methods for
T2D and IBD, respectively (Figure 6B and C). As before,
the sets of disease associated differentially abundant
genes discovered only by MUSICC were enriched for
pathways previously reported to be linked to T2D and
IBD, including glycolysis/gluconeogenesis [13,15] and
glutathione metabolism [17], respectively. These findings
suggest that MUSICC not only corrects various biases in
metagenomic functional data, but can also lead to signifi-
cant changes in the identification of disease-associated
genes, pointing to novel candidates for microbiome-based
intervention (and avoiding false discovery of other, clearly
unrelated genes).

Moving beyond individual genes, we next set out to
examine whether MUSICC affects the discovery of
pathway-level functional shifts in the microbiome. Such
pathway-level analyses and the study of pathways identi-
fied as associated with a disease state is one of the most
common downstream comparative analysis approaches
(for example, [7,11,20]). Following this paradigm, we
conducted a comparative analysis of pathway abun-
dances in the two disease-related datasets described
above, to identify T2D- and IBD-associated pathways
(Methods). Comparing the set of T2D-associated path-
ways identified when using standard compositional
normalization to the set identified after applying
MUSICC, a clear impact was observed both on the
number of pathways discovered and on their statistical
significance (Figure 7A). Specifically, all 19 T2D-
associated pathways identified with compositional
normalization were also identified with MUSICC, but
in 13 of these 19 pathways (68%), the significance level
was increased when using MUSICC. Moreover, with
MUSICC, 17 additional T2D-associated pathways (that did
not pass the significance threshold when using compos-
itional normalization) were identified, including pathways
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Figure 6 The impact of MUSICC on the discovery of differentially abundant genes. The number of genes identified as differentially
abundant between (A) HMP stool samples and tongue dorsum samples, (B) type 2 diabetes (T2D) cases and controls, and (C) inflammatory
bowel disease (IBD) cases and controls, are illustrated. Each Venn diagram describes the overlap between the set of genes identified when
using standard compositional normalization (cyan, left) and the set of genes identified when using MUSICC (maroon, right). Pathways that are
over-represented in the set of genes identified by only one of the two methods are listed.
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previously reported as linked to T2D (for example, methane
metabolism [21] and glycolysis [13,15]). A similar pattern
was observed in our analysis of the IBD dataset (Figure 7B).
Specifically, all seven pathways identified as IBD-associated
with compositional normalization were also identified
with MUSICC, with six out of these seven pathways
(86%) becoming more significant with the application
of MUSICC. Similarly, 28 additional pathways were
identified only with the application of MUSICC, in-
cluding previously reported IBD-associated pathways
(such as Riboflavin metabolism [17]).

Considering the overall increase in the significance
level of disease-associated pathways observed above with
MUSICC (Figure 7A and B) and since many disease-
related studies can obtain or process only a limited
number of samples, we further examined whether MUSiCC
can indeed enhance the power to detect disease-associated
pathways when data are limited. We therefore repeated the
comparative analysis above, focusing on two disease-
associated pathways of interest, and measured how signifi-
cant the obtained association signal was when using only a
subset of the available samples. Indeed, we found that with
MUSICC, significance is reached with far fewer samples
than with compositional normalization (Figure 7C and D),
suggesting that MUSICC can successfully uncover novel
disease-associated pathways that may be masked by noise
or by sparse sampling when using standard compositional
normalization. Using this disease-associated pathway dis-
covery as the ultimate benchmark for the applicability of
the various normalization methods, we additionally tested
an alternative approach that was previously used to process
a set of oceanic samples ([19]; Methods). We found that

this method outperformed the standard compositional
normalization approach but was nonetheless far less
successful than MUSICC and still failed to identify many
of the relevant pathways as significant (Additional file 9:
Figure S5).

Finally, having shown that MUSiCC promotes the dis-
covery of disease-associated pathways (and with fewer
samples), we set out to examine whether it can also
allow researchers to combine data from multiple inde-
pendent studies. Pooling sample sets across studies
could dramatically increase the amount of data available
for future comparative analyses and has the potential
to significantly enhance efforts to discover disease-
associated shifts in the microbiome. Specifically, this
approach could be used to harness a large collection
of healthy samples (such as those obtained by HMP)
as controls for many smaller disease-focused studies.
Notably, however, we already identified above marked
spurious variation between different studies of the hu-
man gut microbiome (see Figure 3), suggesting that a
naive pooling of data from multiple studies without careful
correction of sample-specific biases may be challenging.
Indeed, comparing the pathway-level functional profiles of
the healthy samples from the three studies and performing
a principal coordinate analysis (PCoA) to examine the
variation in this pooled set of samples, it was clear that the
vast majority of the variation is study specific (Figure 8A).
In such settings, using healthy samples from one study as
the set of controls for another study would potentially
mask genuine disease-associated shifts and would mostly
highlight study-specific differences. To examine whether
MUSICC can alleviate this problem, we again performed a
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principal coordinate analysis on the healthy samples from
the three studies, applying MUSICC to correct the calcu-
lated abundances in the various samples. Indeed, in sharp
contrast to the pattern observed in Figure 8A, we found
that the study-based clustering was much less obvious
(though still present) after the application of MUSICC,
with the healthy samples from the T2D and IBD studies
largely overlapping and the distances between clusters be-
coming generally smaller than the distances within clusters
(Figure 8B). Accordingly, we next examined whether
MUSICC could indeed help in the identification of
disease-associated pathways when using the healthy sam-
ples from one study as controls for the cases from a differ-
ent study. Specifically, we performed a comparative
pathway analysis using the T2D cases together with either
stool samples from HMP or the healthy samples from the
IBD study as controls, and examined how many of the

T2D-associated pathways identified with the original T2D
dataset could be recovered (Methods). Overall, we found
that using controls from a different study resulted in a
much larger set of identified pathways, likely reflecting
inter-study variation. We therefore restricted our cross-
study analysis, only considering the same number of the
most significant pathways detected with each dataset, to
avoid artificially high recall levels (Methods). We found
that when using compositional normalization, out of the
19 T2D-associated pathways identified with the original
controls, only two (10.5%) pathways were recovered when
using controls from HMP and only one (5.3%) pathway
was recovered when using controls from the IBD study
(Figure 8C). In contrast, when using MUSICC, out of the
36 T2D-associated pathways detected with the original
dataset, eight (22.2%) pathways were recovered when using
controls from HMP and five (13.8%) when using IBD
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controls (Figure 8C). Evidently, while inter-study variation
is still a challenging problem, MUSICC clearly and effect-
ively improves our ability to pool samples from multiple
studies and to increase the power to detect biological path-
ways associated with different diseases.

MUSICC significantly reduces spurious variation in
simulated bacterial samples

Above, we demonstrated that MUSICC reduced spurious
variation and improved our ability to detect disease-
associated pathways in real metagenomic datasets. Such
datasets provide a means to assess the full range of fac-
tors that potentially impact functional profile measure-
ments. However, since the exact underlying taxonomic
and functional compositions in these real datasets are
unknown they cannot serve as a gold standard for evalu-
ating our method or for comparison. We therefore
wanted to further examine the ability of MUSICC to re-
duce spurious variations on a synthetic dataset, where

the true abundances of genes and pathways are available.
To this end, we generated 20 simulated metagenomic
samples, each of which consisted of 500,000 reads
generated at random from a mock community of ref-
erence genomes that were randomly assigned different
relative abundances (see Methods and Additional file
10: Table S5). We then mapped the reads in each sam-
ple to the KEGG database and calculated the read
count of each KEGG Orthology group (KO) in each
sample. We finally normalized and corrected the ob-
tained KO abundances using either MUSICC or stand-
ard compositional normalization.

First, we compared the calculated abundance of each KO
(using either MUSICC or compositional normalization)
with its real underlying average copy number in each sam-
ple, to examine the variation in estimated abundances
across samples. We found that with compositional
normalization, KOs with identical average copy numbers
in different samples exhibit a wide range of normalized
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abundances across the 20 different simulated communities
(Figure 9A). In sharp contrast, correcting KO abundances
with MUSICC resulted in a markedly narrower range of
estimated abundance values for KOs with the same
average copy number (Figure 9B). Moreover, as dem-
onstrated in Figure 9B, MUSICC not only reduced
spurious inter-sample variation, but also provided an
accurate estimation of the average copy number values
of the various KOs, offering clear and biologically in-
terpretable abundance values.

Next, since many comparative analyses of metagen-
omes are performed at the pathway level (for example,
by summing the abundances of all the KOs associated
with a given pathway), we wanted to specifically examine
the impact of MUSICC on spurious pathway abundance
variation. To this end, in generating the simulated sam-
ples discussed above, we intentionally limited our selec-
tion of bacterial genomes to those that contain the
entire set of flagellar assembly genes with the same exact
copy numbers. Accordingly, any observed variation in
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the flagellar assembly pathway across the various sam-
ples is, by construction, spurious. Indeed (see Figure 9C),
the coefficient of variation (CoV; standard deviation over
mean) of the corrected abundance of this pathway across
samples was markedly lower with MUSICC (CoV = 0.03)
than with compositional normalization (CoV =0.175).
To allow a more rigorous statistical analysis of the per-
formances of each normalization method and to quantify
the robustness of the various methods to subsampling,
we further used a bootstrapping approach, repeatedly
selecting a subset of the simulated samples and calculat-
ing the CoV observed in the abundance of this pathway
across each subset. Comparing the distribution of CoV
obtained for 100 subsets, we confirmed that inter-sample
variation is indeed significantly lower with MUSICC than
with compositional normalization (Figure 9C; P <1072,
Student’s t-test for the difference in mean CoV). We
additionally found that the distribution of CoV values
obtained with MUSICC across these 100 subsets exhibited
lower variance than the distribution of CoV values
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Figure 9 Evaluation of different normalization methods across 20 simulated metagenomic samples. Scatter plots are shown, comparing

the average copy number of each KO in each sample to the corrected abundance of the KO in each sample as calculated by compositional
normalization (A) and by MUSICC (B). Each sample is represented by a different color and a regression line for each sample is illustrated. The
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markedly reduced variability between the slopes of the regression lines in (B) (0.99 + 0.022; CoV = 0.022 for MUSICC vs. 2226 + 367; CoV=0.165
for compositional normalization) highlights the beneficial impact of MUSICC in reducing spurious inter-sample variation and its overall accuracy
in inferring underlying copy numbers. (C) Comparison of the observed coefficient of variation (CoV) in estimating the abundance of the flagellar
assembly pathway across simulated samples using different normalization methods. Notably, in this set of samples, this specific pathway should
exhibit no variation. Each dot represents the CoV calculated based on a random subset of 10 samples and the box plots illustrate the distribution
of CoV values across 100 such subsets. Each box plot represents the 25th and 75th percentiles, with the median in black and whiskers extending
to approximately +2.7 standard deviations. The red dot represents the CoV calculated when using all 20 simulated samples.
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obtained with compositional normalization (Figure 9C;
P <10, F-test), suggesting that MUSICC is also more
robust to subsampling.

Finally, since our analysis revealed that variability in
the average genome size across real samples is one of
the factors contributing to spurious inter-sample vari-
ation, we wished to use the simulated samples described
above to compare MUSICC to normalization that is
based on the average genome size in each sample. In
addition to using the real average genome sizes (which
are known for the simulated samples), we utilized two
previously introduced methods, namely GAAS [22] and
Raes et al. [23], for metagenomic-based estimation of
the average genome size in each sample (see Methods).
While these methods were not developed with the aim
of inter-sample normalization in mind, the average
genome size estimates they provide may still be applied
to correct observed spurious variation. We found that
while both real and estimated genome size normalization
markedly decreased spurious variation across samples in
KO abundances (Additional file 11: Figure S6) and in
pathway abundances (Figure 9C), MUSICC significantly
outperformed these genome size based approaches. For ex-
ample, the mean CoV for the abundance of the flagellar as-
sembly pathway across samples was significantly lower in
MUSICC than in any genome size normalization methods
(P <107°, P <10, and P <10, for real average genome
size, GAAS, and Raes et al. respectively; Student’s ¢-test), as
was the variance in the CoV across the 100 subsets
described above (P <0.02, P <0.03, and P <107%, for real
average genome size, GAAS, and Raes et al. respect-
ively; F-test). These results strengthen our finding that
other sample-specific properties impact inter-sample
variation and suggest that our USiCGs-based approach
indeed captures a wide range of determinants in redu-
cing spurious variation (and see also the discussion
below), providing a more reliable characterization of
the functional capacity of different metagenomes.

Conclusions

The development of computational and statistical proto-
cols for analyzing high-throughput metagenomic data
has been a major line of research in recent years. Such
protocols are essential for accurately characterizing the
composition of various microbial communities and ul-
timately for reliably detecting functional shifts that may
be associated with disease. These protocols often include
a compositional normalization step, wherein read counts
are converted into relative abundances, allowing re-
searchers to compare different samples with poten-
tially markedly different coverage. Importantly, this
normalization procedure is extremely common and
has become the de facto standard in metagenomic as-
says and especially in human microbiome studies.
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Above, however, we systematically demonstrated that
this normalization scheme introduces marked inter-
sample spurious variation both across samples from
the same study and across different studies of the hu-
man microbiome. We further rigorously characterized
various sample-specific properties that give rise to this
variation, demonstrating that the average genome size,
the species richness, and the average genome mapp-
ability in the sample all independently contribute to
spurious inter-sample variation. Rather than trying to
reverse these complex and intertwined effects, we sug-
gested a simple correction method, using a large set of
universal single-copy genes to normalize the abun-
dance of all other genes. This method accordingly not
only corrects spurious variation across samples and fa-
cilitates accurate downstream comparative analyses,
but also provides a more biologically relevant and
meaningful abundance measure, estimating the aver-
age genomic copy number of every gene in the sample.

We additionally demonstrated that various gene-level
properties, such as sequence conservation and nucleo-
tide content, induce measurable and clear spurious
intra-sample variation, further biasing calculated gene
abundance profiles. We showed that the impact of these
gene-specific properties on the measured abundance of
universal single-copy genes can be modeled through an
L,-regularized linear regression approach, and that the
learned model can be used to partially correct such
spurious intra-sample variation across all other genes in
the metagenome. Notably, correcting intra-sample vari-
ability can be done by either using the built-in intra-
MUSICC trained model or by learning a specific model
de novo for each new sample. Since our built-in model
was learned using the HMP samples, this model is espe-
cially appropriate for samples that were obtained through a
similar protocol. For samples obtained through different
technologies or different processing pipelines that could po-
tentially give rise to different biases, the intra-MUSiCC
model should be ideally retrained on each dataset. Im-
portantly, however, model training is extremely fast
(see Methods), and since it is based only on the ob-
served abundances of USiCGs (rather than on raw
reads), running time is independent of the number of
reads or their length.

Correcting inter- and intra-sample biases is clearly
crucial for obtaining an accurate measure of gene abun-
dance and for faithfully characterizing the functional
profile of the metagenome. Since the true functional
profile of the human microbiome is generally unknown,
we used multiple approaches to confirm that our correc-
tion methods indeed yield improved abundance values
and better recover the expected abundance and correl-
ation structure of various sets of genes. Most import-
antly, however, we demonstrated that our methods not
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only provide a more accurate gene abundance measure,
but also has a significant impact on the discovery of dif-
ferentially abundant genes and of enriched pathways.
Specifically, we showed that our MUSICC pipeline mark-
edly enhances the identification of disease-associated path-
ways, offering substantially increased statistical power both
in terms of the number of pathways identified and the
number of samples required for identification. Perhaps
most remarkably, we found that MUSICC facilitates efforts
to pool data from several human microbiome studies, cor-
recting much of the study-specific variation and laying the
foundation for future cross-study comparative analyses.
Notably, without MUSICC, such study-specific variation
was so dramatic that it masked practically any genuine, dis-
ease specific variation in the data.

In addition, we also evaluated MUSICC using a set of
simulated samples in which the underlying copy number
of each gene in each sample is known. We demonstrated
that MUSICC significantly reduced spurious inter-sample
variation both at the KO level and at the pathway level
compared to compositional normalization. We further
demonstrated that using the average genome size in each
sample (either real or predicted) for normalization is not
sufficient for removing inter-sample variation and that
MUSICC significantly outperformed such a normalization
approach even in the ideal case of simulated communities.
This finding highlights the benefit of a marker gene based
normalization scheme and specifically the advantage of
using USIiGCs as a yardstick for copy number estimation,
since it can capture the full range of factors that may intro-
duce inter-sample variation. Moreover, it should be noted
that methods for estimating average genome size often em-
ploy scenario-specific optimized parameters or require
complete alignment, whereas MUSICC is a parameter-free
method that relies solely on KO measured abundances.

Clearly, the development of robust computational and
statistical methods for an accurate characterization of
gene abundances is an ongoing effort. Specifically, while
inter-MUSICC potentially corrects most of the inter-
sample variation introduced by sample-specific proper-
ties, correcting gene-specific intra-sample biases is a
much more challenging task. For one, the set of gene-
specific properties that could affect the measured abun-
dance of a gene may be markedly larger than the set we
analyzed. Moreover, the directionality and magnitude of
such effects may not be consistent across different
groups of genes (note, for example, that a USiCGs-based
model corrected >50% of the variation in unseen USiCGs,
but <20% of the variation in semi-USiCGs; and see [25]).
Distinguishing gene-specific effects from sampling noise
is also challenging. We therefore hope that future work
could further elucidate the contribution of additional
properties and fine-tune the model relating gene-specific
features to functional metagenomic profiling biases.
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Another opportunity for future extension of our method
is going beyond bacterial and archaeal organisms and ac-
counting also for other domains of life. Recent studies,
for example, have highlighted the importance of the fun-
gal component in the human microbiome [26]. Since our
method was designed primarily with bacterial and ar-
chaeal genomes in mind, it may not be optimized to
fungi-rich samples and may not accurately correct the
abundances of fungal genes. Importantly, however, al-
though the set of USiCGs used in our study was selected
based on prokaryotic genomes, it is in fact well repre-
sented also in fungi, with 55 of the 76 USiCGs found on
average in 58 of the 71 (82%) fungal genomes currently in
KEGG, with a median copy number of 1.03. Rigorous
processing of fungi-rich samples would thus ideally in-
volve a modified and carefully selected set of marker
genes and specifically tailored settings. Similarly, several
recent studies have demonstrated that specific body sites,
such as the skin, can harbor a substantial viral compo-
nent [26-28]. Clearly, the human virome is an active and
important component of the human microbiome, and as
future efforts provide better characterization of this com-
ponent, our methods could be further refined to account
for the viral genes that may be identified across samples.
One approach, for example, would be to augment our
analysis with a sequence-based preprocessing step to dis-
tinguish reads that originated from this viral component.
Combined, such extensions will allow researchers to im-
prove various metagenomic processing pipelines and
move towards a more accurate estimation of the func-
tional composition of the metagenome. We believe that
the MUSICC framework and the improved estimation of
the average genomic copy number of each gene in the
metagenome represent an important step in this direction
and can ultimately aid in the discovery of microbiome-
based therapeutic targets.

Methods

Software implementation and distribution

MUSICC was implemented in Python and is available
for download or as a web-based application at: http://
elbo.gs.washington.edu/software.html. In addition, it is
available both in GitHub (https://github.com/omanor/
MUSICC) and as a pip-installable python package (using:
pip install -U MUSICC). Input files for MUSICC should
be processed for host contamination removal and anno-
tated by the KEGG orthology group database.

Metagenomic data

Functional metagenomic data from multiple body sites
were obtained from the HMP [2] and were downloaded
from the Data Analysis and Coordination Center (DACC)
website. Genes were labeled by their KEGG Orthology
(KO) Group and relative abundances were normalized for
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length. Sample and gene (KO) abundance data for the in-
flammatory bowel disease study [4] were obtained from a
subsequent analysis of these samples performed by [29].
Sample and gene (KO) abundance data for the type 2 dia-
betes study were obtained from [11].

PICRUSt data

PiCRUSt [24] pre-calculated matrices for operational
taxonomic units (OTUs) and their predicted KOs were
downloaded from the developer’s github site. OTU
abundances mapped to GreenGenes IDs in the HMP
body sites were obtained through personal communica-
tion with the lead author of PICRUSt.

Detecting Universal Single-Copy Genes (USiCGs)

The list of USiCGs was compiled to include KOs that
are both universal and appear in a single-copy in each
genome. To determine the level of universality required,
we used the list of 31 marker genes from the PhlyoSift
pipeline [30], and examined the number of KEGG ge-
nomes in which each of these genes appear. We found
that at minimum (after removing one outlier) these
genes appear in 91.5% (2,313) of the bacterial and ar-
chaeal genomes in KEGG, and therefore considered as
universal any gene that appears in at least 91.5% of
KEGG genomes. Of these genes, we further selected those
that had an average number of copies per genome <1.1 in
the genomes they appeared in, resulting in a list of 76
genes.

Estimating average genome size in HMP samples

To estimate the average genome size in each HMP sam-
ple, we used PICRUSt pre-calculated files (see above),
listing the predicted set of KOs and their copy number
in each OTU. We multiplied the KO copy number by
the average KO length in the KEGG database [1,3] to
obtain an estimate of the effective genome size of each
OTU. We then computed the weighted average genome
size in each sample, weighting the estimated genome
size of each OTU by its relative abundance.

Estimating the species richness and genome mappability
in HMP samples

To estimate the species richness of a given sample, we
counted the number of OTUs identified in that sample.
To estimate the average mappability of short reads in a
given sample, we utilized a recently introduced measure
(implemented as part of the PICRUSt software [24]),
termed Nearest Sequenced Taxon Index (NSTI), which
aims to evaluate the evolutionary distance between each
OTU in a sample to its closest reference genome. Specif-
ically, we used PICRUSt pre-calculated NSTT values (see
above) of each OTU, and for each sample computed the
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weighted average of (1-NSTI) across all OTUs in the
sample, weighted by their relative abundance.

Controlled correlations between USiCGs’ abundances and
sample-specific properties

When calculating the correlation between the abun-
dance of USiCGs and the various sample-specific prop-
erties, we used partial correlation analysis to control for
the effect of other sample-specific properties. Partial cor-
relations (and the corresponding P values) were calcu-
lated using the ‘partialcorr’ function in MATLAB. We
additionally examined the correlation between species
richness (and genome mappability) and USIiCGs’ resid-
uals after correcting for average genome size (see Add-
itional file 4: Figure S3C and D and Additional file 3:
Figure S2E and F). Specifically, we used regression ana-
lysis with the median abundance of USiCGs in each
sample as the response and the average genome size as
the regressor, using the ‘robustfit’ function in MATLAB
to obtain the residuals. P values for the correlation with
the residuals are reported in Additional file 4: Figure
S3C and D and in Additional file 3: Figure S2E and F.

Identifying and analyzing OTU-Specific Genes (OSGs)

For each sample, we used the PICRUSt pre-calculated
file (see above) that describes the predicted KO content
of each OTU [24], combined with the list of OTUs that
appear in the sample, to generate a list of KOs that are
predicted to originate from only a single OTU in that
sample (termed OTU-Specific Genes, or OSGs). For
each OTU and each of its respective OSGs, we com-
puted the Pearson correlation between the relative abun-
dance of the OTU and the abundance of the OSG (using
either compositional normalization or Inter-MUSICC)
across HMP stool samples. To be included in this ana-
lysis we required that both the OTU and the OSG were
present in at least five samples. We then compared the
correlation coefficients obtained when using compos-
itional normalization to those obtained when using
Inter-MUSICC. To control for various factors that may
confound the relationship between OSG and OTU abun-
dances, we further performed a ratio-based analysis. For
a pair of samples, sharing at least one OTU that con-
tains OSGs, the fold-change between the OTU across
the two samples was compared to the fold-change of
each of its OSGs across the two samples. To avoid tran-
sitivity effects between pairs of samples, this process was
performed as follows: for each OTU, the samples were
ordered by the OTU’s relative abundance, and pairwise
comparisons were performed only between consecutive
samples in this ordered list. This was repeated for all
OTUs. The distribution of the ratios between OSG and
OTU fold-changes obtained when using compositional
normalization was compared to the distribution obtained
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when Inter-MUSICC was applied. The Statistical signifi-
cance of the reduction in the mean and variance of this
distribution were computed using the ‘ttest’ and ‘vartest2’
functions in MATLAB.

Examining pairwise gene correlation structure with
compositional normalization and with Inter-MUSiCC

We first downloaded all fully sequenced and annotated
genomes from KEGG (downloaded on 15 July 2013). For
each gene (KO), we computed the Jaccard similarity be-
tween its presence/absence pattern across these genomes
and the presence/absence pattern of all other genes. For
each gene, we then also computed the Pearson correl-
ation between its abundance across HMP stool samples
and the abundances of all other genes. Given these two
metrics, finally, for each gene, we computed the Pearson
correlation between its correlation with all other genes
across genomes and its correlation with all other genes
in metagenomes. Distances and statistical significance
were computed using the ‘pdist’ and ‘ttest’ functions in
MATLAB.

Gene-specific properties

Gene length and species statistics properties were down-
loaded from KEGG. Gene length was calculated as the
average length of all genes labeled with the associated
KO. Conservation and alignment properties were calcu-
lated by first downloading the gene sequences associated
with each KO from KEGG. Next, MAFFT [31] was run
on the set of genes for each KO, and statistics were cal-
culated from the MAFFT multiple alignment output.
Nucleotide content properties (for example, mean GC%)
were calculated from the set of gene sequences assigned
to each KO in KEGG. KO recall and precision properties
were obtained from a large-scale study of short read an-
notation [32] and describe the average recall and preci-
sion (across multiple genomes) in annotating simulated
short shotgun reads originating from each KO.

Regularized linear model linking gene-specific properties

to intra-sample variation

For a given sample, we first defined the observed re-
sponse as the fold-change between the abundance of
each USiCG and the mean abundance of all USiCGs in
the sample. The model covariates were defined for all
samples as the standardized values of the various
USICGs’ gene-specific properties (Additional file 5: Table
S2). When learning the model for a specific sample, we
used a strict five-fold cross-validation (CV) scheme to
learn an Elastic-Net regularized linear model [33-35]
that predicts the fold-change of each USiCG in the sam-
ple. Importantly, in each CV partition to training and
test sets, we first learned the penalty parameter and
model weights using solely the training data (by using an
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internal CV scheme with the MATLAB version of
glmnet [33]), and evaluated the performance of our
learned model by quantifying the fraction of variation
the model explains when predicting the fold-change of
USiCGs held-out as test data. Running time for the
learning step on a typical sample (approximately 13,000
KOs) took less than 1s on a single core processor.

Identifying Semi-Universal Single-Copy genes (semi-USiCGs)
Semi-USiCGs were selected as genes that were present in
at least 2,148 (85%) of bacterial and archaeal genomes in
KEGG with an average number of copies per genome <1.1,
but did not reach the USiCGs threshold of 2,313 (91.5%)
genomes, resulting in a list of 72 such genes.

Identifying highly-correlated genes across genomes

For all KO pairs, we computed the Jaccard similarity
across all KEGG genomes. Only the KO presence/ab-
sence pattern was considered, ignoring KO copy num-
ber. KO pairs with Jaccard similarity >0.95 (that is, they
agree on at least 95% of the genomes they appear in)
were selected, resulting in 1,074 such pairs. Clusters were
defined as sets of five or more genes, all with pairwise
Jaccard similarly >0.95.

Identifying differentially abundant genes

For a given gene and two sets of metagenomic samples
(for example, stool vs. tongue or IBD cases vs. controls),
we compared the distribution of abundances between
the two sets using the Wilcoxon rank-sum test. Genes
that passed the Bonferroni correction (for comparing
HMP body sites) or the FDR correction (for T2D and
IBD cases vs. controls) with corrected P values <0.05
were defined as differentially abundant.

Identifying disease-associated pathways

For a given pathway and two sets of metagenomic sam-
ples (for example, disease cases and controls), we first
computed the pathway abundance in each sample as the
sum of the abundances of genes associated with that
pathway. Next, we computed an association P value for
the pathway by comparing the distribution of pathway
abundance values in the two sets using the Wilcoxon
rank-sum test. Pathways that had a higher median in
disease samples and passed FDR correction (<0.05) were
defined as disease-associated pathways.

Evaluating an alternative normalization approach

To compare the ability of MUSICC to discover disease-
associated pathways with an alternative normalization
approach previously used to process a set of oceanic
samples [19], we followed the scheme applied in [19] to
correct the gene abundances in the IBD dataset. Specif-
ically, we first estimated the average genome size within
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each sample, using the set of eight universal genes sug-
gested in [19]. For each gene we estimated the average
genome size, G, as G = (g + L-2 m)/f, where f denotes the
relative abundance of the gene in the sample, L denotes
the sequence read length in the data (set to 75 bp for
the IBD dataset), and m denotes a minimum overlap
parameter (set to 90 as in [19]). Next, we averaged the
eight estimations and corrected gene abundances by
multiplying the relative abundance of each gene by this
estimated average genome size of the sample. Finally, we
used these corrected abundances and applied the same
pathway-level comparative analysis to identify IBD-
associated pathways. Since this normalization approach
requires raw read counts, we could not apply it the other
datasets analyzed in our study.

Measuring T2D-associated pathway recovery when using
T2D cases with HMP or IBD controls

First, we identified the original T2D-associated path-
ways as described above. Next, we repeated the same
process but as controls used either HMP stool samples
or healthy samples from the IBD study. To compute
the number of recovered pathways, we counted the
number of pathways that were discovered both in the
original setting and in the cross-study setting. In order
to prevent a situation where high recovery stems from
the identification of many pathways, we limited the
number of discovered pathways in the cross-study set-
ting to be the number of pathways discovered in the
original setting.

Simulating microbial samples

To evaluate the performance of MUSICC on a dataset in
which the underlying KO and pathway abundances are
known, we generated a dataset of synthetic metagenomic
samples, following the procedure described in [32]. Spe-
cifically, we generated 20 simulated metagenomic sam-
ples, each of which consisted of 500,000 101 bp reads
generated at random from a collection of reference ge-
nomes that were randomly assigned different relative
abundances (up to 100-fold) in each sample. To facilitate
analysis of pathway level variation, we limited the set of
genomes used to 21 bacterial genomes from KEGG that
contained the entire set of KOs associated with the flagellar
assembly pathway (Additional file 10: Table S5), and each
sample harbored 10 genomes randomly selected from this
set. We then mapped the simulated reads to known KOs
and calculated the read count of each KO in each sample,
as previously described [35]. The underlying true average
copy number for each KO was calculated based on the
genomes included in each sample and weighted by their
relative abundances.
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Using average genome size estimation methods for
sample normalization

We utilized two previously introduced methods for esti-
mating the average genome size in each simulated sam-
ple. First, to apply the method introduced in Raes et al.
[23], we calculated the marker gene density for each
sample. To allow the processing of these samples in a
practical and reasonable time, we used our mBLASTx
mapping to the KEGG database rather than re-blasting
to the STRING database. As marker density, we used
the total number of bases from all reads that matched
any marker gene, divided by the length of the gene for
each read mapped. Next, we plugged the resulting
marker gene density, x, into the following equation for
calculating the effective genome size (EGS):

a+bxL¢
x

EGS =

where L is the read length (101 bp), and a, b, and ¢ are
parameters optimized in the original study (a =21.2, b =
4230, ¢ =0.733) as described in Raes et al. [23]. The ef-
fective genome sizes obtained were highly correlated
with the real average genome sizes in each sample (r=
0.99; Pearson correlation). Using other sets of parame-
ters described in the original study did not improve this
correlation. Finally, we used these calculated effective
genome sizes to normalize the measured KO abun-
dances in each simulated sample.

Second, to apply the method introduced in [22], we in-
stalled the GAAS software (version 0.17). Since GAAS
requires the complete BLAST alignment files, we ran
BLAST for each simulated sample against the 21 ge-
nomes in our simulation (this represents both a best
case scenario and is feasible computationally), using the
same parameters as described in the original study:
blastn -query <sample fasta file > -db < simulation ge-
nomes nucleotide database > -out < GAAS blast results
file > -outfmt 6 -evalue 0.001 -gapopen 5 -gapextend 2
-word_size 11 -penalty -3 -reward 1. Next, we ran
GAAS on the alignment results with the command: gaas
-f<sample fasta file>-d < GAAS nucleotide database
> -m < GAAS blast results file > -gt 0 -gp 0 -gs 0 -j 1, and
obtained GAAS estimated average genome size in each
sample. Overall, the median error in average gnome size
estimation was <1%, comparable to the accuracy re-
ported in the original study. These GAAS average gen-
ome size estimations were again used to normalize the
measured KO abundances.

Additional files

Additional file 1: Table S1. List of 76 Universal single-copy genes
(USICGs). USICGs were defined as KEGG Orthology groups (KOs) that
appear in at least 2,313 (91.5%) of bacterial and archaeal genomes in
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KEGG. This threshold was selected based on the list of markers in PhyloSift
(http//phylosiftwordpress.com/tutorials/scripts-markers/).

Additional file 2: Figure S1. Spurious inter-sample variation across
HMP metagenomic samples in various body sites. See Figure 1B for
definition of box and whisker plot.

Additional file 3: Figure S2. Spurious inter-sample variation in HMP
tongue dorsum samples is correlated with sample-specific properties.

(A) The relative abundance of USiCGs across HMP tongue dorsum
samples. See Figure 1B for definition of box and whisker plot. The median
abundance of USiCGs across tongue dorsum samples is correlated with
(B) the average genome size; R=-06, P <107, (C) the species richness in
the sample; R=043, P <10, and (D) the average genome mappability;
R=-085, P <10, See Methods for more details on estimating sample-specific
properties. (E, F) The correlations with species richness and genome
mappability still hold after correcting the median USiCGs abundance
with respect to the average genome size and using the residuals
(R=0.33, P=0.06 and R=-067, P <10, respectively). Regression lines
are illustrated in black.

Additional file 4: Figure S3. Spurious variation in the abundance of
USICGs across HMP stool samples is correlated with (A) the species
richness in the sample; R= 044, P <10, and with (B) the average
genome mappability; R=-0.85, P <107, (C, D) These correlations still
hold after correcting the median USIiCGs abundance and using the
residuals with respect to the average genome size (R=0.35, P <0.005,
and R=-0.33, P <0.008, for species richness and average genome
mappability, respectively). Each point represents a single stool sample.
Regression lines are illustrated in black. See Methods for more details
on estimating average genome size, species richness, and genome
mappability.

Additional file 5: Table S2. List of gene-specific properties. Gene-specific
properties were calculated for each KO based on the set of genes that
map to it in KEGG. Conservation properties were calculated using the
MAFFT algorithm.

Additional file 6: Table S3. List of 72 semi-Universal single-copy genes
(USICGs). Semi-USICGs were defined as KOs that appear in at least 2,148

(85%) of bacterial and archaeal genomes in KEGG, but did not reach the

USICGs threshold of 2,313 (91.5%) genomes.

Additional file 7: Table S4. List of clusters of genomically co-occuring
genes. Each cluster represents a set of KEGG orthology groups (KOs) that
all have pairwise Jaccard similarity of 95% or more across KEGG genomes.
Size: number of KOs in the cluster; Median RA2: the median proportion
of variability in cluster abundance explained by a USiCGs-based model,
across all HMP stool samples.

Additional file 8: Figure S4. The impact of MUSICC on the discovery
of differentially abundant genes between HMP stool samples and
samples from other HMP body sites, including (A) supragingival plaque,
(B) buccal mucosa, (C) anterior nares, (D) posterior fornix, and (E)
retroauricular crease. Venn diagrams are defined as in Figure 6.

Additional file 9: Figure S5. Comparing the impact of standard
compositional normalization, an alternative normalization approach [19],
and MUSICC on the discovery of disease-associated pathways. Pathways
identified to be associated with inflammatory bowel disease using any
of these three methods are illustrated. Bars denote the significance level
of the association. The dots to the right of each bar indicate whether
this association reached significance with FDR <0.05 with compositional
normalization (cyan), the alternative normalization approach [19] (green),
or MUSICC (maroon).

Additional file 10: Table S5. List of bacterial genomes used in simulated
samples.

Additional file 11: Figure S6. Evaluation of different average genome
size based normalization methods across 20 simulated metagenomic
samples. Scatter plots are as in Figure 9 using the real average genome
size (A), the average genome size estimated by GAAS (B), or the average
genome size estimated by Raes et al. (C), for normalization.
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